Hare on Supervenience

A. J. DALE

In a recent paper R. M. Hare has suggested that what is 'involved in' a claim that \(Fa \) ascribes a supervenient property to \(a \) is that 'Necessarily, if \(Fa \) then there is a valid inference of the "for all \(x \), if \(Gx \) then \(Fx \), \(Ga \) so \(Fa \)" form, the two premisses of which hold.'

Although Hare does not explicitly claim that the quoted sentence expresses a necessary and sufficient condition for a property to be supervenient it is clear from the rest of his paper that he does view his suggestion as being such a condition. I shall regard it as such throughout this note.

My aim in this note is to show that without further amplification Hare's condition is open to the objection that if there is one property which satisfies the above condition for supervenience then all contingent properties satisfy it.

In the course of the paper Hare adds two codicils to the condition as given above. The first is that the universal for all \(x \), if \(Gx \) then \(Fx \) should not be analytically true since this would lead to the immediate conclusion that all properties are supervenient. The second is that the universal should be nomological in character, at least in moral and causal contexts.

As it stands, the condition would seem to allow certain pathological properties to pass as supervenient—though without being supervenient on any properties in particular. For if \(F \) is any property which it is logically impossible for an object to possess—being a round square, for example—then necessarily, if \(Fa \) then \(p \) holds for any proposition \(p \), and thus for the consequent of Hare's condition in particular. This objection could be countered by explicitly adding a further restriction to the condition excluding such properties. However, the existence of the universal for all \(x \), if \(Gx \) then \(Fx \) should surely not depend on \(F \) holding for some \(a \) as is implied by the quoted condition. Hare seems to be aware of this for he further claims it is necessary that there be some universal proposition which holds in the case of a supervenient property whether or not an object actually possesses it. I shall suppose Hare intends that if \(F \) is a supervenient property then it is necessary that there is some non-analytic universal for all \(x \), if \(Gx \) then \(Fx \) which holds. This additional necessary condition will itself exclude those logically impossible (as well as logically necessary) properties from the category of the supervenient.

Suppose, then, that there is some supervenient property \(F \) and thus that necessarily there exists a universal for all \(x \); if \(Gx \) then \(Fx \) which holds nomologically. Suppose, further, that an adequate representation of this universal is

(i) \((x) (Gx \Rightarrow Fx) \).

Consider, for any arbitrary contingent property \(H \) the following universal

(ii) \((x) \left([(Hx \lor Gx) \land (Hx \lor \sim Fx)] \Rightarrow Hx \right) \).

1 R. M. Hare, 'Supervenience', Aristotelian Society Supplementary Volume, 1984, pp 1–9, quotation from pp 4–5.
2 op. cit., p. 10.
Now (i) entails (ii) so if there necessarily exists a universal of the form (i) then there necessarily exists a universal of the form (ii) which itself has the form

(iii) \((G'x \supset Hx)\)

Furthermore whatever sustains (i) and gives it its nomological character also sustains (ii). In addition, if \(Ha\) holds then \((Ha \lor Ga). (Ha \lor \sim Fa)\) must hold so that necessarily, if \(Ha\) then there is a valid inference of the 'for all \(x\), if \(G'x\) then \(Hx\), \(G'a\), so \(Ha\)' form, the two premisses of which hold.

Thus if there is a supervenient property then all contingent properties are supervenient.

There are two objections to the above argument that could perhaps be expanded into overriding ones. One is that material implication has been used to represent \(\text{'if } \ldots \text{ then'}\) and thus that (ii) does not represent a corresponding universal which holds when \(\text{'if } \ldots \text{ then'}\) replaces \(\supset\). But, no matter what the case against a general identification of \(\supset\) with \(\text{'if } \ldots \text{ then'}\) maybe it may still be the case that in this instance (ii) must hold when (i) does even when the \(\supset\) is replaced by \(\text{'if } \ldots \text{ then'}\) throughout. It is, however, no easy matter to adjudicate the status of \(\text{'if } \ldots \text{ then'}\) conditionals with complex antecedents especially if there is the further complication that they are subjunctive. ³ Since there is no agreed logic of such conditionals, if Hare does not accept material implication as an adequate representation of \(\text{'if } \ldots \text{ then'}\) in the implied universal then he has at least to argue that (ii) in an \(\text{'if } \ldots \text{ then'}\) form does not follow from (i) in an \(\text{'if } \ldots \text{ then'}\) form.

Secondly, it may be objected that the term \((Hx \lor Gx). (Hx \lor \sim Fx)\) contains the term \(Hx\) and such circularity should be disallowed. The problem with this objection is that though it is easy to see when a term occurs as part of a longer one—in the present example \(Hx\) occurs twice in the longer term as a disjunct—it is not at all obvious how the \textit{property} referred to by the \textit{predicate} \(H\) occurs as 'part of' a 'longer' property. Indeed, the problem has become notorious from other fields. Perhaps Hare can find some way to protect his condition against this objection but there is no indication in his paper as to how he would proceed.

³ See, for example, the discussion in D. Nute, \textit{Topics in Conditional Logic}, Dordrecht, 1980.