On Hare's "Better"

M. K. Reunie

Noucire:, Vol. 2, No. 1 (Feb., 1968), 75-79.

Stable URL:
http://links.jstor.org/sici?sici=0029-4624%28196802%292%3A1%3C75%3AOG%22%E2%0.C0%3B2-C

_Noucire: _is currently published by Blackwell Publishing.
On Hare’s "Better"

M. K. RENNIE
UNIVERSITY OF AUCKLAND, NEW ZEALAND

In [1], p. 184, Hare has suggested the following definition of ‘better’:

‘A is a better X than B’ is to mean the same as ‘If one is choosing an X, then, if one chooses B, one ought to choose A’.

He claims of this definition (p. 185):

Now, I think that it will be agreed that ‘better than’, as so defined, could do fairly adequately the job that is done in ordinary language by ‘better than’.

In this note I question this claim by indicating some of the unacceptable consequences of Hare’s definition. As a preliminary, we need to decide whether Hare means the “If . . . then . . .” which occurs in it to be rendered as material implication. In a discussion of the conditions under which the advice “A’s lectures on the Ethics are better than B’s” would have been ignored, Hare makes it fairly clear that the conditional is to be taken as material implication; for he says that only in the case of the pupil’s going to B’s lectures and not to A’s can the pupil be accused of not taking the advice. However, Hare has confused the issue by saying just prior to the discussion of this example:

We must remember, first of all, that a conditional sentence is false only when the antecedent is true and the consequent is false. This may be said, whatever view we take as to the possibility of defining ‘if’ truth-functionally.

Here Hare has confused necessary and sufficient conditions: it is a sufficient condition for any conditional to be false that its ante-
ecedent be true and its consequent false, but this is a necessary condition for material implication only. In the first sentence Hare has asserted it to be a necessary condition for any brand of conditional to be false: this assertion is false and casts doubt on Hare’s intentions concerning the rendering of the conditional in his definition. In the first place I will treat it as material implication, then later I will consider it as a stronger conditional relation.

For present purposes (although certainly not in general) we may omit the ‘purpose’ or ‘field of choice’ X from Hare’s definition, and we may also ignore the implicit quantification over all agents which appear in it. Letting our variables, x, y, . . . range over the evaluated items, and letting ‘Chx’ abbreviate ‘the agent choose x’, ‘OChx’ abbreviate ‘the agent ought to choose x’, and ‘xBy’ abbreviate ‘x is better than y’, we may render the definition symbolically as:

\[(\text{DB}) \quad \text{xBy} =_{st} \text{Chy} \supset \text{OChx}\]

Now, what properties does ‘better than’ have in its ordinary use and in semi-formal axiology? Its major characteristic, and one necessary for it to have any action-guiding force, is that it is an ordering relation. In particular, using Suppes’ classification of relations ([2], pp. 221-2), we may expect it to be a strict partial ordering, where a strict partial ordering is defined as a relation which is irreflexive and transitive (and therefore asymmetrical). We will see that Hare’s ‘better’ cannot be a strict partial ordering without doing considerable violence to our ordinary notions of choice and obligation.

From (DB), we have as an immediate consequence of B’s irreflexivity:

\[(1) \quad (x) \sim (\text{Chx} \supset \text{OChx}), \quad \text{i.e.}\]
\[(2) \quad (x) \ (\text{Chx} \& \sim \text{OChx}), \quad \text{i.e.}\]
\[(3) \quad (x) \ (\text{Chx} \& (x) \sim \text{OChx}), \quad \text{i.e.}\]

and (3) is quite false, for it is not the case that we choose every item, nor that every item is one that it is not the case that we ought to choose. Hence B’s irreflexivity leads to unacceptable consequences.

Next we consider the consequences of B’s transitivity. If B is transitive, then

\[(4) \quad (x) \ (y) \ (z) \ (\text{Chy} \supset \text{OCh} x \&. \text{Chz} \supset \text{OChy} : \supset : \text{Chz} \supset \text{OCh} x),\]
By propositional calculus, (4) is equivalent to

\[(5) \quad (x) \, (y) \, (z) \, (Chz \land OChy \supset \leftarrow \, Chy \lor OChx),\]

thence by quantification theory to

\[(6) \quad (y) \, ((\exists z) \, Chz \land OChy \supset \leftarrow \, Chy \lor (x) \, OChx)\]

and thence to

\[(7) \quad (\exists z) \, Chz \supset (y) \, (OChy \supset \leftarrow \, Chy \lor (x) \, OChx).\]

Now (7) asserts that if something is chosen, then if anything ought to be chosen then either it is chosen or everything ought to be chosen. This is clearly false, e.g. in the case where both something is chosen which ought not to be chosen and something else not chosen ought to be chosen.

So of the two defining properties of a strict partial ordering, B's having either yields unacceptable consequences. Hence we cannot accept B as a strict partial ordering, and hence it cannot be a suitable semi-formal analogue of 'better than'.

We might try to salvage Hare's definition by replacing the material implication by a stronger conditional relation; if we use strict implication then we may lay down

\[(DB') \quad xB'y = \leftrightarrow (Chy \models OChx)\]

If B' is a strict partial order, then its irreflexivity entails

\[(1') \quad (x) \, \sim (Chx \models OChx),\]

which in turn entails

\[(2') \quad (x) \, (\sim \square \, \sim Chx \land \sim \square OChx), \quad \text{and}\]
\[(3') \quad (x) \, \Diamond Chx \land (x) \, \sim \square OChx,\]

which are apparently quite acceptable. Similarly, the transitivity of B' seems to have no unacceptable consequences analogous to (7).

However, at least one difficulty arises from (DB'). If we have

\[(8) \quad (x) \, (y) \, (xB'y = \square (Chy \models OChx)),\]

then in S4 or S5, in which \(\square p = \square \square p\) is a thesis, we have

\[(9) \quad (x) \, (y) \, (xB'y \models \square (xB'y)),\]

which asserts that every ascription of the relation B' is a matter of
logic. This is quite counter-intuitive, especially insofar as \((x) \sim \Box \text{OCh}x \) from (3') seems intuitively acceptable.

Indeed, (8) and with it (DB'), may be falsified by taking \(x \) and \(y \) as any two distinct items of evaluation, such that \(x \) is better than \(y \) but the choosing of \(y \) does not strictly imply an obligation to choose \(x \). In order to find such an \(x \) and \(y \), we need only remember that a strict implication is false if it is logically possible that the antecedent be true and the consequent false: given this, virtually any pair of distinct items \(x \) and \(y \) (except perhaps those specified by a definite description such as "the item that ought to be chosen") may be used to falsify (DB').

We might try to salvage (DB) or (DB') by weakening the requirement that 'better-than' be a strict partial ordering to a requirement that it should be a partial ordering. A partial ordering is a relation which is reflexive, antisymmetrical and transitive; by so weakening our requirement we would be assuming that Hare's definition is a definition of 'better-than-or-the-same-as' rather than 'better-than'. However, neither \(B \) nor \(B' \) can even be a partial ordering: to begin with, we have already considered the unacceptable consequence (7) of \(B' \)'s transitivity.

From (DB), we have as an immediate consequence of \(B \)'s reflexivity:

\[
(10) \quad (x) \ (\text{Ch}x \supset \text{OCh}x)
\]

and (10) is quite false, for it is not the case that we only choose those things that we ought to choose. If \(B' \) is reflexive, then we have

\[
(10') \quad (x) \ \Box \ (\text{Ch}x \supset \text{OCh}x),
\]

and this is just as unacceptable as (10). So on the score of reflexivity alone, neither \(B \) nor \(B' \) can be a partial ordering relation.

Similarly, \(B \)'s antisymmetry leads to unacceptable consequences. If \(B \) is antisymmetrical then

\[
(11) \quad (x) \ (y) \ (xBy \ & yBx \therefore x = y), \quad i.e.
\]

\[
(12) \quad (x) \ (y) \ (\text{Ch}y \supset \text{OCh}x \ & \text{Ch}x \supset \Box \text{OCh}y \therefore x = y).
\]

Now (12) has the consequence that any two items which are not chosen are identical, and also that any item which is not chosen but ought to be chosen is identical with every item.

To sum up: the relation \(B \), whose definition (DB) probably
best captures Hare's intentions in defining his 'better', can have no one of the properties required for it to be either a strict partial ordering or even a partial ordering. The relation \(B' \), a stronger relation than \(B \), is also open to vitiating objections if it is taken to be either kind of ordering relation. So Hare's definition fails to satisfy the very simplest of formal adequacy conditions.

REFERENCES
